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Abstract

Let E be an elliptical curve defined over F2m and the mapping τ is a Frobenius endomorphism
from the set F2m to itself. The Koblitz curve is a special curve whose τ has been used to improve
the calculation performance of its scalar multiplication, nP where P is a point on the curve E.
Moreover, the multiplier, n is τ -adic non adjacent form (TNAF) expansion where its digit is
generated by the repeated division of an integer in the ring of Z(τ) by τ . Previous research has
found that the power of Frobenius endomorphism τm has some advantages in TNAF, Reduced
TNAF and their equivalent i.e. pseudoTNAF expansions. In this paper, new finding of τm based
on v-simplex and arithmetic sequences is provided. With this approach, the performance of
converting modulo ρ τ

m−1
τ−1

to r + sτ an element of Z(τ) in pseudoTNAF′s system is enhanced.

Keywords: cryptography; field; Frobenius endomorphism; Koblitz curve; number of elliptic
points; sequence of arithmetic; sequence of simplex; τ -adic non adjacent.
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1 Introduction

Elliptical Curve Cryptography (ECC) was introduced in 1985 by [9]. ECC′s secret messaging
system is a public keymechanism for which scalar multiplication (SM) is the dominant operation.
This SM involves computing integer n with a point P on an elliptic curve. The ECC system has
been standardized as the most effective cryptographic system used since 1987 due to its difficulty
in finding the secret key nwhich is amultiplier ofP . Koblitz′s curves originally named anomalous
binary curves are defined over F2 as follows:

Ea : y2 + xy = x3 + ax2 + 1,

with a ∈ {0, 1} as suggested by [12] in 1997. Cost of computational operations on Koblitz curve
can be reduced in the existence of Frobenius endomorphism [10]. Let τ : Ea(F2m) → Ea(F2m)
be a Frobenius mapping for a point P = (x, y) on Ea(F2m) be defined as τ(x, y) = (x2, y2) and
τ(∞) =∞. Ea(F2m) forms an abelian group under addition operation. The identity of the abelian
group is the point at infinity ∞, whereas the point addition can be computed by the chord and
tangent method [11]. Suppose the trace for the mapping is t = (−1)1−a and its identity is given by
τ2 = tτ −2, so (τ2 +2)P = tτ(P ). For fast computation on such curves, Koblitz considered a base-
τ expansion of elements in ring Z(τ) with τ = 1+

√
−7

2 . Suppose P and Q are points on Koblitz
curve. SM is nmultiple repetition of a point on the curve and is denoted as nP = P +P + · · ·+P
such that nP = Q.

Solinas [12] introduced a multiplier of SM in the form of τ -adic non-adjacent (TNAF) (see
Definition 2.1) on the Koblitz curve to reduce elliptical SM costs. To improve its performance,
another SM algorithm based on a reduced τ -adic non-adjacent form (RTNAF) (see Definition 2.2)
was developed by [13]. He also showed that given a Lucas relation U(t, 2), Um+1 = tUm− 2Um−1
where U0 = 0, U1 = 1, then

τm = τUm − 2Um−1, (1)

for all m > 0. This equation can be applied for computing the order of the curve via the norm of
τm − 1 and to convert the relation τm into r + sτ which is an element in the ring of Z(τ) where r
and s are integers. Once r + sτ is computed, an equivalent integer nmodulo τm−1

τ−1 (i.e. based on
RTNAF) can be easily obtained before implementing nP .

Brumley & Järvinen [2] presented an efficient procedure to compute r + sτ from the input
all bit ci among

∑l−1
i=0 ciτ

i expansion using recurrence U(t, 2) sequence and equation (1). They
applied it onto a Field Programmable Gate Array (FPGA) to produce an equivalent integer n. It is
known that FPGA is an integrated circuit reprogrammed by a customer or a designer to be desired
application or functionality requirements after manufacturing.

Yunos et al. [16] introduced a better alternative to the TNAF and RTNAF known as pseudoT-
NAF (see Definition 2.3) if it satisfies a specific criteria. In addition, they rephrased equation (1)
to construct another power of τ expression as follows:

τm = ymt
m + xmt

m+1τ, (2)
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with x0 = 0, y0 = 1, xm = xm−1 + ym−1 and ym = −2xm−1 form > 0. It is obviously useful to ac-
celerate the process of transforming an expansion in the form of TNAF(

∑l−1
i=0 ciτ

i) (see Definition
2.1) into r + sτ an element of Z(τ). Ali & Yunos [1] applied it to obtain the minimum and maxi-
mum of TNAF′s norms that occur among all elements in Z(τ) on Koblitz curve. Furthermore, the
operation cost of the SM can be calculated after the length of pseudoTNAF expansion is estimated
more precisely. Indirectly, by using equation (2), Yunos et al. [16] and Hadani et al. [8] found that
N(τm−1) can be used as an alternative calculation method to determine the number of points on
the curve.

Until now, studies on finding the practical formula for τm to strengthen the invulnerability of
the pseudoTNAF-based cryptographic system is still active and equation (2) is efficiently used
to convert τ

m−1
τ−1 into r + sτ . The following are some research that benefits from this conversion.

Yunos & Suberi [17] determined that selection of coefficients r0 and r1 from ρ = r0 + r1τ , and the
coefficients of r and s from τm−1

τ−1 are either even or odd. However, they do not explain how to
identify the appropriate m so that the coefficients r and s becomes even or odd. They were also
unable to find the nature of ρ so that the density of non-zero digits (measured by the Hamming
weights) in expansion of pseudoTNAF with mod ρ τ

m−1
τ−1 is lower than for those in the TNAF and

RTNAF.

In recognition of the importance of τm, Hadani et al. [8] produced another formula of τm as
follows:

τm = −2sm−1 + smτ, (3)

as detailed in Propositions 2.1 and 2.2. The construction was based upon pyramid number’s for-
mula [3], Nichomacus Theorem [7] and Faulhaber formula [6] but it is still a bit complex. Our
objective of this research is to derive τm in a more concise form which is based on v-simplex and
arithmetic sequences. Our concern here, can this formula help us to enhance the performance
of converting ρ τ

m−1
τ−1 to r + sτ before doing a scalar multiplication (nP ) where n in the form of

pseudoTNAF?

The organization of this paper is as follows. Section 1 describes three types of τm (refer (1),
(2) and (3)) with some advantages. In Section 2, the preliminaries of this study is presented.
Meanwhile, Section 3 discusses on how to construct a general formula for the coefficient fi(m) in
expansion of sm for 2 ≤ i ≤ m+1

2 andm ≥ 2i− 1 (refer Definition 2.7), and then introduce a new
approach for developing τm = rm + smτ an element in Z(τ). The main advantage of using this
formula is discussed in Section 4. The concluding chapter contains a summary of the paper, and
also proposes future studies.

2 Preliminaries

The following are some definitions from [17] considered in this paper.

Definition 2.1. A τ -adic non-adjacent form (also called τ -NAF or TNAF) of nonzero n̄ in Z(τ) is equal
to
∑l−1
i=0 ciτ

i where ci ∈ {−1, 0, 1} and cici+1 = 0 for all i. If cl−1 6= 0 then l is said to be the length of
τ -NAF.

TNAF(n̄) in the form
∑l−1
i=0 ciτ

i is an expansion with its digits generated by successively divid-
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ing n̄ by τ and allowing remainders −1, 0, or 1. An example to obtain a TNAF for certain integer
is shown in Example 5.1.

Definition 2.2. AReduced τ -adic non-adjacent form (also called RTNAF) of nonzero n̄ inZ(τ) is
∑l−1
i=0 ciτ

i

that is equal to n mod τm−1
τ−1 , where ci ∈ {−1, 0, 1} and cici+1 = 0 for all i. If cl−1 6= 0 then l is said to be

the length of RTNAF.

Definition 2.3. A Pseudo τ -adic Non-Adjacent Form (also called pseudoTNAF) of nonzero n̄ in Z(τ) is∑l−1
i=0 ciτ

i that is equal to n mod ρ τ
m−1
τ−1 , where ρ ∈ Z(τ), ci ∈ {−1, 0, 1} and cici+1 = 0 for all i. If

cl−1 6= 0 then l is said to be the length of pseudoTNAF.

Definition 2.4. Let N : Q(τ) → Q be a rational set as a function of norm. Let α = x + yτ an element
Q(τ). The norm of α is N(α) = x2 + txy + 2y2 where t = (−1)1−a and a ∈ {0, 1}.

An expression τm−1
τ−1 and ρ τ

m−1
τ−1 as in Definitions 2.2 and 2.3 can be converted into r + sτ . We

choose any integer n from interval [1, |ρ′|N(r′ + s′τ)− 1] such that r + sτ = ρ′(r′ + s′τ) where ρ′
is an integer. After that, n̄ in Z(τ) can be generated from dividing an integer n by r + sτ . Lastly,
RTNAF(n̄) and pseudoTNAF(n̄) can be written in the form of expansion

∑l−1
i=0 ciτ

i where the
digits are generated by successively dividing n̄ by τ , allowing remainders −1, 0, or 1. Whereas
SM, n̄P process is illustrated in Figure 1 and can be found in Yunos & Suberi [17] in 2018.

𝐸𝑎 𝐹2𝑚 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 1
where 𝑎 ∈ 0,1 and 𝑥, 𝑦 ∈ 𝐹2𝑚

𝑷 = 𝒙, 𝒚 𝝉 𝑷 = 𝒙𝟐, 𝒚𝟐

𝝑 ഥ𝒏 = ഥ𝒏𝑷

∞ ∞

Frobenius,

mapping τ

satisfying

𝜏2 + 2 = 𝑡𝜏

𝐸𝑎 𝐹2𝑚

𝜏 𝒁

ത𝑛

𝒓 + 𝒔𝝉 𝒁 𝝉

𝑍 𝜏 = 𝑟 + 𝑠𝜏 ; 𝑟, 𝑠 ∈ 𝑍
and 𝑍 𝜏 ⊂ 𝐸𝑎

𝜗

𝜗 ത𝑛 = 𝜗 ∑𝑐𝑖𝜏
𝑖

= 𝜗 𝑐0 + 𝜗 𝑐1𝜏 +⋯+ 𝜗 𝑐𝑙−1𝜏
𝑙−1

= 𝑐0 + 𝜗 𝑐1 𝜗 𝜏 +⋯+ 𝜗 𝑐𝑙−1 𝜗 𝜏𝑙−1

= 𝑐0 + 𝑐1𝜏 𝑃 +⋯+ 𝑐𝑙−1𝜏
𝑙−1 𝑃

= ∑𝑐𝑖𝜏
𝑖(𝑃)

No doubling operations,

there are addition and mapping operation 

Figure 1: Illustration of SM on Koblitz curve.

Definition 2.5. [5] A v-simplex for j, v ∈ Z+ can be expressed as

j(j + 1)(j + 2) · · · (j + v − 1)

v!
=

(
j + v − 1

v

)
.

Remark 2.1. If v = 1 then 1-simplex number also known as linear number with formula j
1 =

(
j
1

)
.

If v = 2 then 2-simplex number also known as triangular numberwith formula j(j+1)
2 =

(
j + 1

2

)
. Another

formula is
∑j
k=1 k = 1 + 2 + 3 + · · ·+ j [5].
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If v = 3 then 3-simplex also known as tetrahedral number with formula j(j+1)(j+2)
6 =

(
j + 2

3

)
[5].

If v = 4 then 4-simplex also known as pentatope number with formula j(j+1)(j+2)(j+3)
24 =

(
j + 3

4

)
[4].

Definition 2.6. [14] A sequence a1, a2, a3, . . . , ak, . . . is called an arithmetic progression if there exist a
scalar d known as common difference among consecutive terms of the sequence such that ak− ak−1 = d for
all k > 1.

Theorem 2.1. [14],[15] If a1 and d are the first term and common difference respectively in arithmetic
sequence with pattern a1, a1+d, a1+2d, a1+3d, . . . then the kth term can be written as ak = a1+(k−1)d.

Definition 2.7. [8] Given τm = rm+smτ an element of Z(τ) for any positive integerm. Let f1(m) = 1.
We defined fi(m) be a coefficient in expansion of sm for i ∈ {1, . . . ,

⌊
m−1
2

⌋
} .

Proposition 2.1. [8] Given τm = rm + smτ an element of Z(τ) for any positive integer m. Let s1 = 1

and s2 = t. If fi(m) = (−2)i−1

(i−1)!
∏2i−2
j=i (m− j) for 2 ≤ i ≤ m+1

2 andm ≥ 2i− 1, then the coefficient sm

can be written as sm =
∑bm+1

2 c
i=1 fi(m)tm−2i+1 with f1(m) = 1 andm ≥ 3.

Proposition 2.2. [8] If sm from Proposition 2.1, then the coefficient rm can be written as rm = −2sm−1
with f1(m) = 1 andm ≥ 3.

3 Results and Discussion

In this section, we consider τm = rm + smτ in which sm expansion has the coefficient fi(m)
(Definition 2.7). The identity equation τ2 = tτ − 2 is chose to transform τm into rm + smτ for m
∈ Z+. Followed by the following examples for calculation of two values ofm.
For τ3 = τ2τ = −2t + (t2 − 2)τ, then r3 = −2t and s3 = t2 − 2 are obtained.
For τ4 = ττ3 = −2t2 + 4 + (t3 − 4t)τ , then r4 = −2t2 + 4 and s4 = t3 − 4t are observed.
Next, the data of sm and rm for 1≤ m ≤ 15 are listed as in Table 1. Subsequently, the term sm in
τm = rm + smτ from this table can be represented in Table 2.

Table 1: All rm and sm of τm for 1 ≤ m ≤ 15.

m rm sm
1 0 1
2 −2 t
3 −2t t2 − 2
4 −2t2 + 4 t3 − 4t
5 −2t3 + 8t t4 − 6t2 + 4
6 −2t4 + 12t2 − 8 t5 − 8t3 + 12t
7 −2t5 + 16t3 − 24t t6 − 10t4 + 24t2 − 8
8 −2t6 + 20t4 − 48t2 + 16 t7 − 12t5 + 40t3 − 32t
9 −2t7 + 24t5 − 80t3 + 64t t8 − 14t6 + 60t4 − 80t2 + 16
10 −2t8 + 28t6 − 120t4 + 160t2 − 32 t9 − 16t7 + 84t5 − 160t3 + 80t
11 −2t9 + 32t7 − 168t5 + 320t3 − 160t t10 − 18t8 + 112t6 − 280t4 + 240t2 − 32
12 −2t10 + 36t8 − 224t6 + 560t4 − 480t2 + 64 t11 − 20t9 + 144t7 − 448t5 + 560t3 − 192t
13 −2t11+40t9−288t7+896t5−1120t3+384t t12−22t10+180t8−672t6+1120t4−672t2+64
14 −2t12 + 44t10− 360t8 + 1344t6− 2240t4 +

1344t2 − 128
t13−24t11+220t9−960t7+2016t5−1792t3+
448t

15 −2t13 + 48t11− 440t9 + 1920t7− 4032t5 +
3584t3 − 896t

t14 − 26t12 + 264t10 − 1320t8 + 3360t6 −
4032t4 + 1792t2 − 128
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Table 2: List of all coefficient fi(m) in sm expansion for 1 ≤ i ≤ 8 and 1 ≤ m ≤ 15.

m f1(m) f2(m) f3(m) f4(m) f5(m) f6(m) f7(m) f8(m)
1 1
2 1
3 1 −2
4 1 −4
5 1 −6 4
6 1 −8 12
7 1 −10 24 −8
8 1 −12 40 −32
9 1 −14 60 −80 16
10 1 −16 84 −160 80
11 1 −18 112 −280 240 −32
12 1 −20 144 −448 560 −192
13 1 −22 180 −672 1120 −672 64
14 1 −24 220 −960 2016 −1792 448
15 1 −26 264 −1320 3360 −4032 1792 −128

Referring to Table 2, the general form of a certain fi(m) can be identified by its relation to the
sequence of v-simplex number (Definition 2.5) for v = 2, 3, 4, 5 and the arithmetic sequence as in
Definition 2.6 and Theorem 2.1. The sequence {f2(m)}m=12

m=3 = {−2,−4,−6, . . . ,−20} is observed
where its general formula for {f2(m)}m=∞

m=3 is as follows:

Lemma 3.1. If {f2(m)}m=∞
m=3 = {−2,−4,−6,−8,−10, . . . }, then the coefficient f2(m) can be written

as f2(m) = −2(m− 2).

Proof. By Theorem 2.1 and Definition 2.6, the sequence {f2(m)}m=∞
m=3 = {−2,−4,−6,−8,−10, . . . }

is an arithmetic with its common difference d = −2. Substitute both values into formula in Theo-
rem 2.1 for the mth term that is f2(m) = f2(3)+(m−3)d. Therefore, f2(m) = −2+(m−3)(−2) =
−2(m− 2).

Referring to Table 2, it is observed that the sequence {f3(m)}m=12
m=5 = {4, 12, 24, 40, 60, 84, 112, 144}

with its general term f3(m) can be found from the following argument:

Lemma 3.2. Let {f3(m)}m=∞
m=5 = {4, 12, 24, 40, 60, 84, 112, 144, . . . }. If {1, 3, 6, 10, 15, 21, 28, 36, . . . }

satisfies a sequence of triangular number, then the coefficient f3(m) can be written as f3(m) = 2(m−
4)(m− 3).

Proof. It is known that {1, 3, 6, 10, 15, 21, 28, 36, . . . } is a sequence of triangular number as in
Definition 2.5 with a general formula j2+j

2 for integer j ≥ 1. Next, sequence {f3(m)}m=∞
m=5 =

{4, 12, 24, 40, 60, 84, 112, 144, . . . } is rewritten as 4{1, 3, 6, 10, 15, 21, 28, 36, . . . }. Substituting
j = m− 4 into 4( j

2+j
2 ), coefficient f3(m) can be written as f3(m) = 2(m− 4)(m− 3) with integer

m ≥ 5.

Further from Table 2, the sequence {f4(m)}m=12
m=7 = {−8,−32,−80,−160,−280,−448} has general

term f4(m) obtained by the following lemma:
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Lemma 3.3. Let {f4(m)}m=∞
m=7 = {−8,−32,−80,−160,−280,−448, . . . }. If {1, 4, 10, 20, 36, 56, . . . }

satisfies a sequence of tetrahedral number, then the coefficient f4(m) can be written as f4(m) =
− 4

3 (m− 6)(m− 5)(m− 4).

Proof. It is known that {1, 4, 10, 20, 36, 56, . . . } is a sequence of tetrahedral (Definition 2.5) with
formula j(j+1)(j+2)

6 for integer j ≥ 1 . Next, sequence {−8,−32,−80,−160,−280,−448, . . . } can
be written as−8{1, 4, 10, 20, 36, 56, . . . }. By substituting j = m−6 into−8 j(j+1)(j+2)

6 ,we obtained
that f4(m) = − 4

3 (m− 6)(m− 5)(m− 4) for integerm ≥ 7 .

Through observation, sequence {f5(m)}m=15
m=9 = {16, 80, 240, 560} from Table 2 can be recon-

structed using a pattern of pentatope number. A general term f5(m) for integers m ≥ 9 was
developed as follows:

Lemma 3.4. Let {f5(m)}m=∞
m=9 = {16, 80, 240, 560, . . . }. If {1, 5, 15, 35, 70, . . . } satisfies a sequence of

pentatope numbers, then the coefficient f5(m) can be written as f5(m) = 2
3 (m−8)(m−7)(m−6)(m−5).

Proof. It is known that the sequence {1, 5, 15, 35, 70, . . . } has a pattern of sequence of pentatope
number as in Definition 2.5 with formula j(j+1)(j+2)(j+3)

24 for integer j ≥ 1. Now, {f5(m)}m=∞
m=9 =

{16, 80, 240, 560, . . . } can be written as 16{1, 5, 15, 35, 70, . . . } with formula 16 j(j+1)(j+2)(j+3)
24 .We

substitute j = m− 8 into this relation in order to get f5(m) = 2
3 (m− 8)(m− 7)(m− 6)(m− 5) for

integerm ≥ 9.

Finally, observing fromTable 2, we found that {f6(m)}m=15
m=11 = {−32,−192,−672,−1792,−4032}

can be rearranged like a pattern of 5-simplex number and this sequence in general term is illus-
trated as follows:

Lemma 3.5. Let {f6(m)}m=∞
m=11 = {−32,−192,−672,−1792,−4032, . . . }. If {1, 6, 21, 56, . . . } satisfies

a sequence of 5-simplex number, then the coefficient f6(m) can be written as

f6(m) = −4
(m− 10)(m− 9)(m− 8)(m− 7)(m− 6)

15
.

Proof. It is known that sequence {1, 6, 21, 56, . . . } with pattern of 5-simplex number has general
formula j(j+1)(j+2)(j+3)(j+4)

120 with integer j ≥ 1 as in Definition 2.5. Now,

{f6(m)}m=∞
m=11 = {−32,−192,−672,−1792,−4032, . . . }

can be rewritten as−32{1, 6, 21, 56, . . . }with general formula−32 j(j+1)(j+2)(j+3)(j+4)
120 .We substi-

tute j = m − 10 into this relation to obtain f6(m) = −4 (m−10)(m−9)(m−8)(m−7)(m−6)
15 for integer

m ≥ 11 .

Next, the patterns of f2(m) up to f6(m) of Lemmas 3.1-3.5 can be used to construct the coeffi-
cient fi(m) = (−2)i−1

(
m−i
i−1

)
in sm expansion. The argument of proof is as follows:
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Theorem 3.1. If f1(m) = 1, then
fi(m) = (−2)i−1

(
m−i
i−1

)
,

for 2 ≤ i ≤ m+1
2 andm ≥ 2i− 1.

Proof. The argument of this proof is to use mathematical induction as follows :

If i = 2, we have the relation f2(m) = −2(m− 2) in Lemma 3.1 and found that

f2(m) = (−2)2−1
(
m−2
2−1

)
is true.

If i = 3 the relation f3(m) = 2(m− 3)(m− 4) in Lemma 3.2, then

f3(m) =
4(m− 3)(m− 4)

2!

=
4(m− 3)!

2!(m− 5)!

= (−2)3−1
(
m−3
3−1

)
is true.

Subsequently, if i= 3, 4, 5, then fi(m) = (−2)i−1
(
m−i
i−1

)
is true by using Lemmas 3.3, 3.4 and

3.5. Now, assume that fk(m) = (−2)k−1
(
m−k
k−1

)
is true for i = k. Therefore,

fk+1(m) =
fk(m)

2 (−2)−1(m−k)
(m−2k+1)(m−2k)

=
(−2)k−1

(
m−k
k−1

)
k (−2)−1(m−k)
(m−2k+1)(m−2k)

=
(−2)k−1 (m−k)!

(k−1)!(m−2k+1)!

k (−2)−1(m−k)
(m−2k+1)(m−2k)

= (−2)k
(m− k − 1)!

k(k − 1)!(m− 2k − 1)!

= (−2)k
(
m−k−1

k

)
= (−2)k+1−1(m−(k+1)

(k+1)−1
)
.

Thus, fk+1(m) = (−2)k+1−1(m−(k+1)
(k+1)−1

)
is also true by using fk(m). In conclusion, fi(m) =

(−2)i−1
(
m−i
i−1

)
is true for all 2 ≤ i ≤ m+1

2 andm ≥ 2i− 1.

Furthermore, the following corollary is obtained:

Corollary 3.1. Let τm = rm + smτ and fi(m) = (−2)i−1
(
m−i
i−1

)
be a coefficient in expansion of sm if

and only if fi(m) = (−2)i−1

(i−1)!
∏2i−2
j=i (m− j) for 2 ≤ i ≤ m+1

2 andm ≥ 2i− 1.
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Proof. (⇒)

fi(m) = (−2)i−1
(
m−i
i−1

)
= (−2)i−1

(m− i)!
(i− 1)!(m− 2i+ 1)!

=
(−2)i−1

(i− 1)!
· (m− i)(m− i− 1) · · · (m− 2i+ 2)(m− 2i+ 1)!

(m− 2i+ 1)!

=
(−2)i−1

(i− 1)!
· (m− i)(m− i− 1) · · · (m− 2i+ 3)(m− 2i+ 2)

=
(−2)i−1

(i− 1)!

2i−2∏
j=i

(m− j).

(⇐)

fi(m) =
(−2)i−1

(i− 1)!

2i−2∏
j=i

(m− j)

=
(−2)i−1

(i− 1)!
· (m− i)(m− i− 1) · · · (m− 2i+ 3)(m− 2i+ 2)

=
(−2)i−1

(i− 1)!
· (m− i)(m− i− 1) · · · (m− 2i+ 2)(m− 2i+ 1)!

(m− 2i+ 1)!

= (−2)i−1
(m− i)!

(i− 1)!(m− 2i+ 1)!

= (−2)i−1
(
m−i
i−1

)
.

In this paper, we also improve the result of [8] as in the following theorem:

Theorem 3.2. Let τm = rm + smτ and rm = −2sm−1. If fi(m) = (−2)i−1
(
m−i
i−1

)
then

rm =

bm2 c∑
i=1

(−2)i
(
m−1−i
i−1

)
tm and sm =

bm+1
2 c∑
i=1

(−2)i−1
(
m−i
i−1

)
tm+1

form ≥ 2.

Proof. By using Proposition 2.2, we obtain

τm = −2sm−1 + smτ

= −2

bm2 c∑
i=1

fi(m− 1)tm−2i +

bm+1
2 c∑
i=1

fi(m)tm−2i+1τ.

If fi(m) = (−2)i−1
(
m−i
i−1

)
and t2 = 1 then

τm =

bm2 c∑
i=1

(−2)i
(
m−1−i
i−1

)
tm +

bm+1
2 c∑
i=1

(−2)i−1
(
m−i
i−1

)
tm+1τ.
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Therefore, rm =
∑bm2 c
i=1 (−2)i

(
m−1−i
i−1

)
tm and sm =

∑bm+1
2 c

i=1 (−2)i−1
(
m−i
i−1

)
tm+1.

The formulas rm and sm from Theorem 3.2 are very important to simplify the process of trans-
formations as follow:

Firstly, to recover (rm− 1) + smτ that is an element in Z(τ) from τm− 1 by substituting rm− 1
and sm into Definition 2.4, the number of points can be calculated through Koblitz curve Ea with

N(τm − 1) = (rm − 1)2 + t(rm − 1)sm + s2m.

In order to estimate the operating cost of the nP ′s scalar multiplication, it is an alternative
method to calculate the points of Koblitz curve rather than using equation (2).

Secondly, to obtain TNAF(n) from the expansion of
∑l−1
i=0 ciτ

i and the algorithm given as fol-
lows:

Algorithm 3.1
Input: a ∈ {0, 1} , l, all coefficients cm ∈ {−1, 0, 1} form = 0, 1, ..., l − 1.
Output: r + sτ ∈ Z(τ)
Computation:
1. t← (−1)1−a;
2. Form from 0 to 1 do dm ← τm

3. Form from 2 to l − 1 do
4. hm ← bm2 c
5. gm ← bm+1

2 c
6. rm ←

∑hm
k=1

(−2)k(m−1−k)!
(k−1)!(m−2k)! t

m

7. sm ←
∑gm
k=1

(−2)k−1(m−k)!
(k−1)!(m−2k+1)! t

m+1

8. dm ← rm + smτ
9. r + sτ ← add(cm · dm,m = 0..l − 1)
10. Return (r + sτ)

For example, Algorithm 3.1 can be applied to recover 1 − 4τ from 1 − τ3 − τ6 (refer the reverse
calculation in Example 5.1).

Remark 3.1. Either curve E0 or E1 can be chose to give input a ∈ {0, 1} in this algorithm. The same
should be done if one want to choose a as an input of three algorithms in Section 4. Whereas, rewritten rm
and sm in Theorem 3.2 into factorial symbols, the formulas were obtained in steps 6 and 7 in Algorithm 3.1,
and steps 5 and 6 in Algorithm 4.1.

The main advantage of using formula τm in Theorem 3.2 is discussed in the following section.

4 Performance of Converting ρ τm−1
τ−1

to r + sτ

Converting τm−1
τ−1 into r + sτ illustrated in the following proof. This is an important transfor-

mation before finding pseudoTNAF’s of integer in modulo ρ τ
m−1
τ−1 .
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Theorem 4.1. If τm = rm + smτ and τm−1
τ−1 = r + sτ, then

r =
1− t− rm + rmt+ 2sm

3− t
,

and
s =

1− rm − sm
3− t

,

form ≥ 2.

Proof. Let τm = rm + smτ and rewrite τm−1
τ−1 as follows:

τm − 1

τ − 1
=
rm + smτ − 1

τ − 1

=
rm + smτ − 1

τ − 1
.
τ − 1

τ − 1

=
τ̄(rm + smτ − 1)− rm − smτ + 1

τ τ̄ − τ − τ̄ + 1

=
(t− τ)(rm + smτ − 1)− rm − smτ + 1

2− τ − t+ τ + 1

=
rmt+ smtτ − t− rmτ − smt2 + τ − rm − smτ + 1

3− t

=
rmt+ smtτ − t− rmτ − sm(tτ − 2) + τ − rm − smτ + 1

3− t

=
1− t− rm + rmt+ 2sm + (1− rm − sm)τ

3− t
.

Therefore, it is proven that

r =
1− t− rm + rmt+ 2sm

3− t
,

and
s =

1− rm − sm
3− t

,

form ≥ 2.

Now, we proceed with the following algorithm in converting ρ τ
m−1
τ−1 to r + sτ by using the

formula τm fromTheorem 3.2. After that, Theorem 4.1 is applied for converting τm−1
τ−1 into ρ2+ρ3τ .

Finally, directly multiply ρwith ρ2 + ρ3τ in order to get r + sτ an element of Z(τ).

This Algorithm 4.1 is an important part before finding pseudoTNAF an integer nmod ρ τ
m−1
τ−1 .

The performance of running Algorithm 4.1 will be compared to the following algorithms. That is,
Algorithms 4.2 and 4.3 using equations (1) and (2) respectively.
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Algorithm 4.1
Input: a ∈ {0, 1} ,m ≥ 2, nonzero integer ρ0, ρ1.
Output: r + sτ ∈ Z(τ)
Computation:
1. t← (−1)1−a;
2. r0 ← 1, s0 ← 0, r1 ← 0, s1 ← 1
3. hm ← bm2 c
4. gm ← bm+1

2 c
5. rm ←

∑hm
k=1

(−2)k(m−1−k)!
(k−1)!(m−2k)! t

m

6. sm ←
∑gm
k=1

(−2)k−1(m−k)!
(k−1)!(m−2k+1)! t

m+1

7. ρ2 ← 1−rm+rmt+2sm−t
3−t

8. ρ3 ← 1−rm−sm
3−t

9. r ← ρ0ρ2 − 2ρ1ρ3
10. s← ρ1ρ2 + ρ0ρ3 + ρ1ρ3t
11. Return (r, s)

Algorithm 4.2
Input: a ∈ {0, 1},m ≥ 2, nonzero integer ρ0, ρ1
Output: r + sτ ∈ Z(τ)
Computation:
1. t← (−1)1−a

2. U0 ← 0, U1 ← 1,
3. For i from 2 tom do Ui ← tUi−1 − 2Ui−2
4. ρ2 ← −2(sum(′U ′i ,

′ i′ = 2..m− 2))− 1
5. ρ3 ← sum(′U ′i ,

′ i′ = 2..m− 1) + 1
6. r ← ρ0ρ2 − 2ρ1ρ3
7. s← ρ1ρ2 + ρ0ρ3 + ρ1ρ3t
8. Return (r, s)

Algorithm 4.3
Input: a ∈ {0, 1} ,m ≥ 2, nonzero integer ρ0, ρ1
Output: r + sτ ∈ Z(τ)
Computation:
1. t← (−1)1−a

2. r0 ← 1, s0 ← 0, r1 ← 0, s1 ← 1, x0 ← 0, y0 ← 1
3. Form from 1 tom− 1 do
4. xm ← xm−1 + ym−1
5. ym ← −2xm−1
6. rm ← ymt

m

7. sm ← xmt
m+1

8. ρ2 ← add(rm,m = 0..m− 1)
9. ρ3 ← add(sm,m = 0..m− 1);
10. r ← ρ0ρ2 − 2ρ1ρ3
11. s← ρ1ρ2 + ρ0ρ3 + ρ1ρ3t
12. Return (r, s)
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Note that the performance of running process for Algorithm 4.1 is faster than the other version
as shown in Table 3 and its graphical representation in Figure 4. That is, comparison of time and
memory in average on standard Koblitz curves. We used a Maple programming with computer
performance with Intel(R) Core(TM) i7 processor, 8 GB RAM and 64-bit operating system.

Table 3: Performance of converting ρ τ
m−1
τ−1 to r + sτ .

Algorithm 4.1 Algorithm 4.2 Algorithm 4.3
Curve Time (s), Time (s), Time (s),

Memory (bits) Memory (bits) Memory (bits)
K-163 0.0154, 3044914 0.0344, 3374718 0.0688, 4465634
K-233 0.0154, 4475665 0.0316, 3567508 0.0816, 4480097
K-283 0.0186, 4481532 0.022, 3561963 0.0874, 4020754
K-409 0.0192, 2471115 0.044, 2662914 0.1812, 2443794
K-571 0.0188, 4485270 0.0406, 2691790 0.2094, 4463296
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Figure 2: Graphical representation of Table 3.

Another advantage of using Algorithm 4.1 is the coefficients r and s either even or odd can
be identified. This result is also an extension of study conducted by [17] in 2018 to solve the SM
problem on the Koblitz curve. The following is an example of the impact of being able to identify
the parity of r and s whether it will be an even or odd number by choosing some value of m, t,
ρ0 = 1 and ρ1 = 0.

Example 4.1. Supposem = 163, t = −1, ρ0 = 1 and ρ1 = 0. We have

r163 = −
81∑
i=1

(−2)i
(
162−i
i−1

)
= 3334746503586958025881130
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and

s163 =

82∑
i=1

(−2)i−1
(
163−i
i−1

)
= 1824026374634505274957943,

then by using Theorem 4.1, we obtain

r =
1− r163 + s163

2
= −755360064476226375461593,

and

s =
1− r163 − s163

4
= −1289693219555365825209768.

From the above value, we found that r and s are odd and even numbers, respectively. In fact, generally
its already proven in [17], if ρ0,m are odd and ρ1 is even, then r and s are an odd and even numbers,
respectively.

5 Conclusions and Future Work

In this study, a new finding of power of Frobenius endomorphism expression by using v-
simplex and arithmetic sequence was introduced. With this approach, we enhance the perfor-
mance of transformation process as required in pseudoTNAF’s system before doing SM process.

This research can be extended by looking at the nature of ρ such that pseudoTNAF has low-
density as suggested by previous researcher. Besides, the improvements of result from previous
studies need to be done in deriving the TNAF formulas that has the least Hamming weight in its
expansion. We also believe that the design of FPGA based Lucas sequence block can be improved.
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Appendix A

Example 5.1. Find TNAF of 1− 4τ as follows.
Consider n = 1− 4τ and τ = t− τ as conjugates of τ . Firstly, let t = 1 then τ · τ = 2 is shown :

τ · τ = −τ2 + τ = −τ + 2 + τ = 2.
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Followed by the next steps in obtaining TNAF(1−4τ) until we get the last remainder to be 0when repeatedly
dividing 1− 4τ by τ :
Step 1 : The result when 1− 4τ divide by τ is not in element of Z(τ):

1− 4τ

τ
= −4 +

1

τ
· τ
τ

= −7

2
− τ

2
6∈ Z(τ).

Therefore, we need to choose the first remainder to be either c0 = −1 or c0 = +1 so that 1− 4τ − c0 can be
divided by τ :
If c0 = −1 then

1− 4τ + 1

τ
= −4 +

2

τ
· τ
τ

= −3− τ ∈ Z(τ),

or if c0 = 1 then
1− 4τ + 1

τ
= −4 ∈ Z(τ). (4)

Choose one of c0 above so that the next division will be as follows.

−3− τ
τ

=
−3

τ
· τ
τ
− 1 =

−5

2
+

3

2
τ 6∈ Z(τ),

or −4

τ
=
−4

τ
· τ
τ

= −2 + 2τ ∈ Z(τ), (5)

produced an element of Z(τ). Thus, we prefer c0 = 1 because of equation (4) and write

TNAF(1− 4τ) = [1, c1, c2, . . . , cl−2, cl−1].

Next, we consider the second remainder c1 = 0 because equation (5) and write

TNAF(1− 4τ) = [1, 0, c2, . . . , cl−2, cl−1].

Step 2 : The division −2 + 2τ by τ produced an element of Z(τ) :

−2 + 2τ

τ
=
−2

τ
· τ
τ

+ 2 = 1 + τ ∈ Z(τ).

Therefore, choose the third remainder c2 = 0 and write

TNAF(1− 4τ) = [1, 0, 0, c3, c4, . . . , cl−2, cl−1].

Step 3 : Since 1 + τ cannot be divided by τ then choose the fourth remainder c3 = ±1 so that 1 + τ − c3
can be divided by τ :
If c3 = −1 then

1 + τ + 1

τ
=

2

τ
· τ
τ

+ 1 = 2− τ ∈ Z(τ), (6)

or if c3 = 1 then
1 + τ − 1

τ
= 1 ∈ Z(τ).

Consider one of c3 above so that the next division is

2− τ
τ

=
2

τ
− 1 = −τ ∈ Z(τ), (7)

or
1

τ
=

1

τ
· τ
τ

=
1

2
− τ

2
6∈ Z(τ),
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produced an element of Z(τ). Therefore, we choose c3 = −1 because of equation (6) and write

TNAF(1− 4τ) = [1, 0, 0,−1, c4, . . . , cl−2, cl−1].

After that, the fifth remainder, c4 = 0 because of equation (7) and write

TNAF(1− 4τ) = [1, 0, 0,−1, 0, c5, . . . , cl−2, cl−1].

Step 4 : Since −τ can be divided by τ :

−τ
τ

=
−τ
τ
· τ
τ

= −1,

Then the sixth remainder is c5 = 0 and write

TNAF(1− 4τ) = [1, 0, 0,−1, 0, 0, c6, . . . , cl−2, cl−1].

Step 5 : Since −1 cannot be divided by τ then c6 = −1 :

−1 + 1

τ
= 0.

Therefore, we have to choose either c6 = −1 or c6 = 1 so that −1− c0 can be divided by τ :
If c6 = −1 then −1+1

τ = 0 or if c6 = 1 then

−1− 1

τ
=

2

τ
· τ
τ

= −1 + τ.

We choose c6 = −1 since the divisions −1 − c0 by τ results in 0 and is written as TNAF(1 − 4τ) =
[1, 0, 0,−1, 0, 0,−1] = 1− τ3 − τ6. It has seven digits and it Hamming’s weight is three.
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